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Abstract
Metabolism plays a complex role in the evolution of cancerous tumors, including inducing a multifaceted ef-
fect on the immune system to aid immune escape. Immune escape is, by definition, a collective phenomenon
by requiring the presence of two cell types interacting in close proximity: tumor and immune. The microen-
vironmental context of these interactions is influenced by the dynamic process of blood vessel growth and
remodelling, creating heterogeneous patches of well-vascularized tumor or acidic niches. Here, we present
a multiscale mathematical model that captures the phenotypic, vascular, microenvironmental, and spatial
heterogeneity which shape acid-mediated invasion and immune escape over a biologically-realistic time scale.
The model explores several immune escape mechanisms such as i) acid inactivation of immune cells, ii) com-
petition for glucose, and iii) inhibitory immune checkpoint receptor expression (PD-L1). We also explore
the efficacy of anti-PD-L1 and sodium bicarbonate buffer agents for treatment. To aid in understanding
immune escape as a collective cellular phenomenon, we define immune escape in the context of six collective
phenotypes (termed “meta-phenotypes”): Self-Acidify, Mooch Acid, PD-L1 Attack, Mooch PD-L1,
Proliferate Fast, and Starve Glucose. Fomenting a stronger immune response leads to initial benefits
(additional cytotoxicity), but this advantage is offset by increased cell turnover that leads to accelerated
evolution and the emergence of aggressive phenotypes. This creates a bimodal therapy landscape: either the
immune system should be maximized for complete cure, or kept in check to avoid rapid evolution of invasive
cells. These constraints are dependent on heterogeneity in vascular context, microenvironmental acidifica-
tion, and the strength of immune response. This model helps to untangle the key constraints on evolutionary
costs and benefits of three key phenotypic axes on tumor invasion and treatment: acid-resistance, glycoly-
sis, and PD-L1 expression. The benefits of concomitant anti-PD-L1 and buffer treatments is a promising
treatment strategy to limit the adverse effects of immune escape.

1 Introduction

M
etabolism plays a complex but key role in the evolution of cancerous tumors. Localized hypoxia
due to vascular instability and dysfunction leads to acidification of the tumor microenvironment
via the Pasteur effect. Decreased pH selects for acid-resistant tumor-cell phenotypes, followed by

the emergence of aerobic glycolysis (i.e., the Warburg effect1). The further acidification of the surrounding
microenvironment by these metabolically aggressive cells foments acid-mediated invasion2–4. This nonlinear
evolutionary trajectory through a range of metabolic phenotypes has been studied clinically, experimentally,
and theoretically5–10. We present an extension of a hybrid multiscale agent-based mathematical model8
that incorporates phenotypic, vascular, microenvironmental, and spatial heterogeneity to investigate acid-
mediated invasion over a biologically-realistic temporal scale. Here, we model immune predation by T cells
in the metabolically altered tumor microenvironment. We include several immune escape mechanisms such
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as acid-mediated inactivation of T-cell activation, T-cell inhibition by checkpoint ligand expression on tumor
cells, and T-cell glucose deprivation.

1.1 Metabolism and the tumor-immune response
The effect of metabolic processes on the immune system is multifaceted and complex, involving both intra-
cellular metabolism of many varied cell types and the impact of this metabolic activity on the surrounding
microenvironment. Immunometabolism is a growing area of study11 and systems biology and modeling
approaches are being applied to the field12. However, the dynamics of tumor-immune interactions in the
context of altered cellular metabolism remain only partially understood. In this work, we focus on T cells,
in particular cytotoxic T lymphocytes (CTL, also known as �/� CD8+ effector T cells), which are key players
in the adaptive immune response to foreign pathogens and defective host cells. CTLs are activated via
antigen presentation during the body’s initial inflammatory response, after which they rapidly proliferate.
Mathematical models are highly suited to studying tumor-immune dynamics13–19, whether using non-spatial
continuum approaches (recently reviewed in 20) or spatial agent-based models (recently reviewed in 21). How-
ever, very few tumor-immune models to date have incorporated the effects of cancer metabolism on immune
function22,23. Here, we investigate several key connections between tumor metabolism and immune function.
The physiological role of acidic niches in lymph nodes to in regulate T-cell activation has been demonstrated
recently24, thus in the model here, CTLs are subject to inactivation in acidic microenvironments (see figure
5D). One recent study demonstrated that acidic microenvironments result in inactivation of CTLs but do not
affect their viability25. Cells rescued from low pH environments had the ability to regain effector function.
Tumor acidity also promotes regulatory T-cell (Tregs) activity as well as an increase of PD-1 expression on
Tregs, indicating that PD-1 blockade may increase suppressive capacity26. Tumor-infiltrating CD8+ T-cells
require glucose to support their killing function, and this competition for glucose with cancer cells (see fig-
ure 5E) dampens their anti-cancer response27. In contrast, Tregs avoid competition for glucose within the
tumor microenvironment through rewired metabolism away from aerobic glycolysis, which enhances their
immune-suppression function within the tumor28.

We also include checkpoint inhibition in our model. Programmed cell death-1 (PD-1) is an inhibitory
immune checkpoint receptor expressed on activated CTLs, and programmed cell death ligand-1 (PD-L1)
is a cell surface marker typically expressed on non-hematopoietic tissues that activates PD-1 signaling29.
Upon PD-L1 binding to PD-1, antigen-specific T-cells undergo inactivation and apoptosis30 and suppressive
T-cells become more prominent31, thereby down-regulating the immune system response. Some cancers
constitutively express PD-L1, thereby making them less visible to the immune system. This mechanism is
targetable with anti-PD-1/PD-L1 therapy. In the event that a tumor develops escape or evasion mechanisms
in response to immune attack, selection may occur for subclonal populations capable of withstanding immune
predation32,33, often well before tumor invasion into normal tissue34. Classifying tumors into immune-hot
or -cold has shown both intra- and inter-tumoral heterogeneity based on immune infiltration35,36.

Immunotherapies targeting checkpoint pathways are effective in multiple cancer types, however many
patients remain unresponsive or eventually recur due to an immuno-suppressive tumor microenvironment.
Combining oral bicarbonate buffering with immunotherapy (adoptive T-cell transfer, anti-CTLA4, or anti
PD-1) increased responses in murine cancer models, presumably due to increased immune activity in a less
acidic microenvironment25. Below, we extend a mathematical model of cancer metabolism8–10 by incorpo-
rating immune predation (T cells) to investigate optimal strategies for immunotherapy (anti-PD-L1) and
bicarbonate buffer therapy.

1.2 Dynamic vasculature may create acidic niches
Blood vessel growth and remodelling is a dynamic process, responding to stimuli from cells in the nearby
tissue, signaling factors within microenvironmental context, and treatment37. These vascular dynamics are
often abnormal in tumors, and areas of poor vascularization are prone to develop acidic niches. Mechanistic
modeling has been used to investigate the treatment effects of systemic pH buffers (sodium bicarbonate) to
limit microenvironmental selection for acid-adapted phenotypes arising in such niches, and this approach
can significantly delay carcinogenesis in TRAMP mice9,38. Buffers reduce intratumoral and peritumoral
acidosis, inhibiting tumor growth6 and reducing spontaneous and experimental metastases39,40. Here, we
model T-cell recruitment through the vasculature with subsequent migration into the surrounding tumor,
and this leads to uneven distribution of immune-mediated kill due to pockets of immune-protected acidic
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Figure 1. Collective phenotypes drive acid-mediated invasion. A contrived example illustrating how the initial
configuration heterogeneity of the same group of cells leads to differential outcomes due to context-dependent selection. A low
glycolysis phenotype (blue) and a high glycolysis phenotype (purple) compete for resources according to the rules outlined in
Box 1 (see Methods). Top row: a mixed configuration leads to no evolution. Acid-mediated invasion does not occur because
the volumetric concentration of acid produced by aggressive cells is not enough to cause invasion when highly glycolytic cells
are seeded far apart. Bottom row: In contrast, artificially placing the aggressive high glycolysis phenotypes on the rim leads
to invasion from increased volumetric acid via a group-effect.

niches. The complex interplay between immune, normal, and cancer cells with varied individual phenotypes
each within a specific environmental context results in dynamical variation that is greater than the sum of
the individual parts. This necessitates mathematical modeling approaches that account for each hierarchical
scale of the system41.

A patient’s homeostatic healthy ecosystem can influence the emergent evolutionary dynamics in cancer
progression and treatment42, dependent upon factors such as the tissue architecture at tumor initiation43,
surrounding stroma44, and negative selection imposed by immune response45–47. To address the interplay
between normal homeostatic well-vascularized tissue, immune response, and cancer progression and treatment
we construct and interrogate a hybrid discrete continuous model8. The model accounts for evolving metabolic
phenotypes, vasculature, immune response, microenvironmental conditions, and immune escape mechanisms.

1.3 Collective cellular phenotypes: the “Metaphenotype”
The model introduced here is an extension of previous modeling work8–10, by including immune predation
and immunotherapy. Figure 2 illustrates the behavior of cells interacting with neighbors and environmental
factors (panel A), the rules governing internal tumor cell decisions (panel B), the range of phenotype space
(acid resistance, glycolysis, and PD-L1 in panel C), and the rule governing T-cell internal decision (panel D).

Previously published iterations of the model noted that the individual cellular phenotype was insufficient
to define behaviors such as acid-mediated invasion8, but did not attempt to quantify any collective phenotypic
behavior. A simple, contrived example in figure 1 illustrates the need to quantify context-dependent selection
in this model. This figure shows the time-evolution of identical phenotypic compositions that have varied
initial spatial configurations (mixed or shell). The mixed configuration of low glycolysis (blue) and high
glycolysis (purple) phenotypes leads to no evolution. The volumetric concentration of acid produced by
aggressive cells is not enough to cause invasion when highly glycolytic cells are seeded far apart. In contrast,
artificially placing the aggressive high glycolysis phenotypes on the rim leads to invasion from increased
volumetric acid via a group-effect. Clearly, both the phenotype and neighboring context is important.

In order to describe the collective nature of phenotypes operating within the context of surrounding cells
and environmental conditions, we propose the concept of a “metaphenotype”. Each of these metaphenotypes
account for phenotypic traits (e.g. PD-L1 expression) as well as surrounding environmental context (e.g.
local glucose or pH concentration), and competition with neighboring cell types (immune, cancer, normal).
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Figure 2. Hybrid Discrete-Continuum Model Diagram. (A) Model interaction network for diffusible molecules
(yellow), vasculature (light gray), normal tissue (dark gray), and variable tumor phenotypes (colors). Red lines indicate
inhibitory interactions while green lines indicated promoting interactions. (B) Decision process for each cell, with diamonds
representing decisions. Green arrows indicate that the condition is satisfied, and red that the condition is not met. (C) A map
of tumor phenotype state space on three axes. The horizontal axis is the constitutively activated glycolytic capacity (pG), and
vertical axis is the change in acid resistance (pH) from normal, with higher resistance to acidic conditions being higher on the
plot, and the final axis is constitutively expressed PD-L1 (pP). The normal metabolic phenotype is at the intersection of the
two yellow lines, with the cloud of black dots representing normal variation in phenotypes within the tumor composition (each
black dot is a single tumor cell). (D) Decision process for T-cells. T-cells are recruited in proportion to tumor size at a rate of
αT . T-cells are inactivated and removed if they remain is acidic conditions too long, or if they are inactivated by a PD-L1
positive cancer cell.

1.4 The tumor-immune gambit
Recently, mathematical models have focused on the role of “immuno-architecture” to predict the effect of
tumor-immune interactions on survival and response to immune checkpoint inhibitors48–50. A recent study in
triple-negative breast cancer classified immunohistochemistry images into three spatial immunophenotypes:
excluded (T-cells at the tumor border), ignored (negligible T-cell presence), and inflamed (evenly distributed
T-cell presence)48. Ignored and excluded phenotypes are prognostic of poor survival and resistance to anti-
PD-L1 treatment. Another study introduced a three-dimensional multi-scale agent-based modeling approach
where effector and cytotoxic T-cells are recruited through spatially heterogeneous vasculature49. The authors
proposed a prognostic score of the fraction of PD-L1-expressing cells within the tumor rim. Interestingly, the
model predicted insensitivity to T-cell entry point via vascularization (e.g. core versus rim) on pre-treatment
size and PD-L1 expression, but did not take into account vascular effects on oxygen, nutrients, and drug
delivery. One recent work combined a hybrid model with PET imaging data to study the reshaping of
metabolic activity in tumors over time51. High metabolic activity on the tumor periphery resulted in worse
prognostic outcomes.

The back and forth of cancer treatment and a tumor’s evolutionary response has often been compared
to a chess match52–54. In this manuscript, we show that immune predation of tumors can be likened to
an “immune gambit”, where a temporary sacrifice of (normal glycolytic) cells on the periphery leads to
long-term acceleration of the invasion of aggressive (highly glycolytic) phenotypes into surrounding tissue.
This result only becomes clear when comparing to the baseline tumor metabolic evolution without immune
predation. We show that poor vascularization (without immune) selects for aggressive phenotypes while
high vascularization undergoes low levels of evolution. This phenomena has a Goldilocks effect, which occurs
only under moderate levels of immune response. The immune gambit is described as a collective phenotype,
which critically depends on the interplay between local vascularization, immune infiltration, and immune
evasive phenotypes (PD-L1). A mathematical model is the ideal testing ground for this hypothesis because
of direct comparison of immune predation to simulations without the presence of T-cells.

In the next section, we introduce the model, simulate baseline outcomes without immune predation
(figure 3), and illustrate the immune-induced evolutionary bottleneck (figure 4). To quantify immune es-
cape through the lens of collective phenotypes, we classify cells into six “meta” (or collective) phenotypes:
Self-Acidify, Mooch Acid, PD-L1 Attack, Mooch PD-L1, Proliferate Fast, and Starve Glucose.
Each metaphenotype is contingent on a recent tumor-immune interaction and defined in the context of local
microenvironment, with the exception of a “null” metaphenotype: Immune Desert. We quantify the evo-
lution of metaphenotypes over time, illustrating the explanatory power of collective phenotypes in describing
response to buffer therapy and anti-PD-L1 in mono- and combination therapy (figures 6 and 7).
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Figure 3. The effect of vasculature renewal and stability on tumor size and phenotype. (A) Snapshot (at 225
days) is shown for the full multi-scale hybrid cellular automata model: tumor spatial map, phenotypes, vascular renewal
probability, T-cells, diffusible molecules (oxygen, glucose, pH), tumor cell PD-L1, and immune susceptibility. Each snapshot
has corresponding colorbar (right) with marker indicate average value. (B) An example realization of “weak vasculature”
(νmean = 20; pang = 0.1). Acidic conditions in tumor core select for acid resistant and glycolytic Warburg phenotype. (C) An
example realization of “intermittent hypoxia” (νmean = 20; pang = 0.9), where selection is limited because of adequate
vascularization within the tumor core. (D,E,F) N = 10 stochastic realizations are simulated, and the average tumor area (D),
acid resistance phenotype (E), and glycolytic phenotype (F) across 10 values of stability (νmean ∈ [0,100] days), and 10 values of
renewal (pang ∈ [0,1]).
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Figure 4. Immune predation induces an evolutionary bottleneck. (A,B) Tumor area over time (left) and the number
of T-cells for weak vasculature (A) and intermittent hypoxia (B) conditions), shown for no T-cells (green; αT = 0), medium
(blue-gray; αT = 10−3) and high (purple; αT = 10−2) immune response rates. (C-J) Example simulation stochastic realizations
are shown across a range of immune response from low (top) to high (bottom). Immune predation tends to suppress tumor
growth in weak vasculature conditions. In contrast, immune predation induces an evolutionary bottleneck for medium immune
response rates (e.g. see F, H), causing aggressive tumor growth compared to the baseline of no immune response.
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2 Results
2.1 The effect of vasculature renewal and stability on tumor size and phenotype
Figure 3A shows the complex, multi-scale hybrid CA with a snapshot (shown left-to-right) of the tumor
spatial map, phenotypes, likelihood of vascular renewal, T-cells, diffusible molecules (oxygen, glucose, acid),
PD-L1 and immune susceptibility. In previous versions of this model, two phenotypic axes are considered
(see Methods): acid-resistance (light blue) and glycolytic (pink). Simulations are shown in the absence of
immune predation to establish baseline dynamics, before quantifying immune predation in the next section.

In the middle panels of figure 3 we compare two classifications of vasculature: weak vasculature (asso-
ciated with low vessel stability and low rates of vessel renewal) and intermittent hypoxia (associated with
low stability, but high renewal). The spatial map of phenotypes is shown over time, along with a visualiza-
tion called “phenotypic barcoding”, which visualizes the clone size, phenotype and lineage information over
time10. Figure 3B depicts the process by which weak vasculature selects for aggressive tumor growth. Acidic
conditions in the tumor core (low glucose, low oxygen, and high pH) cause rapid death of glycolytically
normal tumor cells with low levels of acid resistance. Selection for acid resistance occurs first (blue phe-
notypes), followed by selection for highly glycolytic tumor cells (pink phenotypes) which eventually invade
into surrounding tissue. Conversely, in figure 3C, intermittent hypoxia conditions result in little selection.
The well-vascularized tumor core limits selection for aggressive phenotypes. This result underscores the
importance of understanding the baseline vascular conditions before modeling the complex dynamics with
the additional immune predation modeling. A snapshot of the intratumoral oxygen, immune susceptibility,
phenotypes, and pH is shown at the end of each simulation.

The bottom row shows the average tumor area (D), and tumor phenotypes (E,F) for simulations across
a range of vascular settings (no immune). Weak vasculature typically results in larger tumors, more acid
resistant phenotypes, and highly glycolytic phenotypes. Weak vasculature induces an acidic niche in the
tumor core, selecting for acid-resistant phenotypes (blue). Increased turnover enables increased evolution
and selection for aggressive Warburg phenotypes (pink), leading to acid-mediated invasion into surrounding
normal tissue. Intermittent hypoxia (low vascular stability with high rates of renewal) generally leads to
lower rates of selection (figure 3C).

2.2 Immune predation induces an evolutionary bottleneck
Figure 4 shows the response of two vascular conditions (weak and intermittent hypoxia) under no immune
response (green; αT = 0), medium (blue-gray; αT = 10−3) and high (purple; αT = 10−2) immune response
rates. Immune cells are recruited in proportion to tumor size and response rate, αT .

Immune response tends to suppress tumor growth in weak vasculature conditions. Compared to baseline
tumor growth, all levels of immune response result in greater tumor suppression. In contrast, immune
predation in intermittent hypoxia conditions often leads to initial response but fast regrowth (figure 4B,
left). This is confirmed by visual inspection of the phenotypic barcoding visualizations in figure 4C-J. Weak
vascular conditions select for aggressive phenotypes with little-to-no immune presence (figure 4C). The
addition of immune cells only serves to slow an already aggressive tumor (figure 4E,G,I). In stark contrast,
intermittent hypoxia conditions rarely select for strong growth in the absence of immune predation (figure
4D). Immune predation serves as a selection pressure, in conditions where there would otherwise be very
little selection.

Immune predation under intermittent hypoxia conditions induces an evolutionary bottleneck for medium
immune response rates (e.g. see F, H), causing fast selection for aggressive growth compared to the baseline of
no immune response. Interestingly, this effect occurs on a “Goldilocks” scale. The long neck of the bottleneck
is associated with higher rates of tumor turnover (due to immune attack), selecting for phenotypes which
are 1) inside an immune-evasive niche or 2) rapidly divide to outgrow immune kill.

2.3 Metaphenotypes explain immune escape under treatment
In order to investigate the role of context-dependent selection of collective phenotypes, we define six collective
phenotypes (“metaphenotypes”) which act as seen in the Venn diagram in figure 5). Each metaphenotype
provides a mechanism of immune escape. The “null” metaphenotype is the lack of collective behavior:
Immune Desert are cells which do not interact with T-cells. Next, we quantify two PD-L1 metaphenotypes:
a counter-attack (tumor cell with high PD-L1 expression that has recently interacted with a T-cell; PD-L1
Attack, yellow), and a mooching PD-L1 (low PD-L1, with a high PD-L1 neighboring cell; Mooch PD-L1,
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Figure 5. Defining metaphenotypes in the context of immune escape. (A) Six collective cellular metaphenotypes
are defined as cancer cells with a given phenotype (e.g. PD-L1), microenvironmental condition (e.g. high acid or low glucose),
or neighboring cell. Immune desert is the absence of recent immune interaction. (B) PD-L1 metaphenotypes depend on the
likelihood of T-cell kill as a function of PD-L1 expression of self (PD-L1 Attack) or neighbor (Mooch PD-L1). (C)
Acidification metaphenotypes depend on the rate of acidification contributed by self (Self-Acidify) or neighbors (Mooch
acid). (D) The rate of acid-inactivation of T-cells. (E) Data from ref. 55 (blue dots) was used to parameterize T-cell death
rate in low glucose, shown in eqn. 10. The Starve Glucose metaphenotype expression corresponds to low glucose
concentrations.

blue). Two metaphenotypes rely on acid-inactivation: self-acidifying (highly glycolytic cells which secrete
acid; Self-Acidify, pink) and non-producers (reside in acidic niche but do not produce acid; Mooch Acid,
green). We also consider a proliferative phenotype that has recently divided into empty space (Proliferate
Fast; red). Lastly, tumor cells also compete with immune cells for glucose (Starve Glucose; light blue).
Importantly, each of these metaphenotypes (excluding Immune Desert) is contingent on a recent tumor-
immune interaction, allowing us to track effective collective phenotypes: only metaphenotypes which survive
an immune interaction (figure 5A).

Two treatments are considered in figure 6: anti-PD-L1 (red) and a pH buffer (blue), given in isolation
or combination (purple). A short window of treatment is simulated and compared results to untreated
baseline (black). While combination therapy outperforms monotherapy in both vascular settings, the vascular
dynamics drive differences in monotherapy outcomes. For example, anti-PD-L1 therapy does not appreciably
slow tumor evolution or growth in weak vasculature (fig. 6A,B). In contrast, anti-PD-L1 does induce large
tumor remission in intermittent hypoxia (fig. 6D,E), albeit only temporarily before a strong relapse. These
results are seen across a range of immune recruitment rates (fig. 6B,E).

The right-hand side of figure 6 shows the distributions of metaphenotype expression for each treatment
scenario. The average metaphenotype expression (across all tumor cells) is shown in fig. 6C,F for each
treatment scenario. Metaphenotype expression is defined on the interval MP ∈ [0,1] for each metaphenotype
(see Methods, Box 2). Therefore, if average expression is above 1, the tumor is strongly immune resistant:
on average there is more than one immune escape strategy per cell.

In all cases, the dominant metaphenotype is Immune Desert, representing tumor cells that have not
recently interacted with a T-cell due to lack of immune infiltration, possibly from low vascularization or
shielding effects from neighboring cancer cells. Vascularization drives differential selection of metapheno-
types in baseline untreated dynamics. Weak vasculature is associated with acidification metaphenotypes
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Figure 6. Metaphenotypes explain immune escape under treatment. Outcome tumor response, growth rate, and
metaphenotype distribution for two treatments: anti-PD-L1 (red) and buffer (blue), given in isolation or combination (purple).
(A) Tumor area over time (weak vasculature) (B) growth rate over time (weak vasculature). (C) Final distribution of
metaphenotypes after treatment (t = 300; weak vasculature). (D) Tumor area over time (intermittent hypoxia vasculature) (E)
growth rate over time (intermittent hypoxia vasculature). (F) Final distribution of metaphenotypes after treatment (t = 300;
intermittent hypoxia).

Figure 7. Spatial configuration of metaphenotypes under treatment. Muller plots showing the frequency of
metaphenotypes over time, with snapshots of spatial configurations during and after treatment, with moderate immune
predation (αT = 10−2). (A,B) untreated dynamics for weak (left) and intermittent hypoxia (right) vascularization. (C,D)
anti-PD-L1 treatment only. (E,F) Buffer treatment only. (G,H) Combination anti-PD-L1 and buffer treatment.
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Figure 8. Summary schematic. Each metaphenotype is ordered from most aggressive to least aggressive in facilitating
acid-mediated invasion and tumor growth under immune predation. This interaction diagram describes the role of two
treatments (anti-PD-L1, buffer) in promoting (green) or inhibiting (red) each metaphenotype. Metaphenotypes names are
shown on the left, and defined mathematically in Box 2. Broadly, the two treatments offset one another by inhibiting the
metaphenotypes that the opposite treatment promotes.

(Self-Acidify, pink; Mooch Acid, green). These are aggressive, highly glycolytic metaphenotypes that
facilitate acid-mediated invasion. In contrast, intermittent hypoxia selects for PD-L1-based immune-escape
mechanisms (PD-L1 Attack, yellow; Mooch PD-L1, dark blue).

Anti-PD-L1 selects for acidification metaphenotypes (self-acidify or mooch acid) in both vascularization
cases. In contrast, buffer treatment eliminates the emergence of both Self-Acidify and Mooch Acid
phenotypes by slowing evolution (e.g. refer to fig. 3C). But in response, PD-L1 Attack is selected (yellow).
Combination therapy strongly targets acidification metaphenotypes and weakly targets PD-L1 phenotypes,
leaving only less aggressive metaphenotypes (Starve Glucose, Immune Desert). Tracking the response
of metaphenotypes to treatment explains why combination therapy is ideal for minimizing tumor growth,
compared to monotherapy options.

2.4 Spatial configuration of metaphenotypes under treatment
Figure 7 illustrates the resulting spatial configuration of metaphenotypes under moderate immune predation
(αT = 10−2). In the top row, untreated dynamics for both weak vasculature and intermittent hypoxia result in
a heterogeneous collection of metaphenotypes in both in space and time. As seen in figure 6, weak vasculature
is associated with acidification metaphenotypes, especially on the outer, invasive front of the tumor. Anti-PD-
L1 treatment selects for increased acidification phenotypes (compared to untreated) in both vascularization
settings (fig. 7C,D). In contrast, buffer slows evolution and selects PD-L1 metaphenotypes, but only on
the tumor edge or near vessels (fig. 7E,F). Combination therapy is required to achieve maximum tumor
response, resulting in small tumors consisting mostly of non-aggressive metaphenotypes (Starve Glucose
or Proliferate Fast).

3 Discussion
Precise characterization of collective phenotypes into metaphenotypes enables a straightforward explanation
of the effect of treatment in a complex, multi-scale model. This characterization is necessary, in part, due to
the fact that acid-mediated invasion is a collective phenotype phenomenon (figure 1). Immune escape is also,
by definition, a collective phenomenon by requiring the presence of two cell types in close proximity: tumor
and immune. Here, immune escape metaphenotypes are only defined in the context of recent immune-tumor
interactions, by not using cellular phenotypes which are present but not actively employed (e.g. a PD-L1+
cell not in the immediate presence of an immune cell).

The most dominant mechanism of immune escape seen in the model is the lack of immune interactions
(immune desert), especially when the tumor bed is poorly vascularized. Tumor-expressed PD-L1 is a viable
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immune-escape mechanism in the absence of treatment, across a range of vascularization, but treatment
with anti-PD-L1 selects for the two acid-inactivation metaphenotypes (Self-Acidify and Mooch Acid).
Environmental conditions must also consider neighboring (and self) cellular phenotypes. A cell in acidic
conditions may rely on acid-inactivation either by self-production of acid or mooching neighboring producer
cells, a form of “public good”. Buffer therapy limits selection for self-acidification, driving selection toward
less aggressive metaphenotypes (Glucose Starvation or Immune Desert). It’s also important to note
that mooching metaphenotypes only occur in the presence of non-mooching phenotypes. Because of this, and
the fact that phenotypes of individual cells change only slowly (upon division), mooching phenotypes are not
expected to be a viable long-term immune escape strategy, but limited to transient, local patches co-localized
with non-moochers. However, in a model where the ratio of two phenotypes is determined stochastically, for
example, a population of both phenotypes could coexist for a longer period of time.

Several factors contribute to lack of responsiveness to immune checkpoint blockers, include abnormal
tumor microenvironment where poor tumor perfusion hinders drug delivery and increases immunosuppres-
sion56. Poor vascularization also leads to a hypoxic and therefore acidic microenvironment, increasing
immunosuppression. The modeling above recapitulates this trend, as immune predation is less effective in
weak vascularized tumors than in intermittently vascularized tumors. Vascular renormalization can be en-
hanced through administration of anti-angiogenic agents (e.g., anti-vascular endothelial growth factor agents)
to fortify immature blood vessels and improve tumor perfusion57. However, our results indicate that admin-
istration of immune checkpoint blockade in tumors with increased vascularization may lead to a short-term
good response but poor long-term outcomes as selection for increased glycolysis occurs.

Mathematical modeling allows for comparison of identical parameterization in the absence (figure 3) and
presence (figure 4) of immune predation. This comparison leads to the observation of an immune gambit
under high vascular renewal (intermittent hypoxia). The emergence of the immune gambit is observed by
direct comparison of the baseline dynamics without immune predation to the acceleration seen with the
immune system, due to immune-induced evolutionary bottleneck (figure 4; right column). The modeling
here demonstrates the potential for combining anti-PD-L1 with a buffer therapy to reduce the impact of
this evolutionary bottleneck. In figure 8, a summary schematic of the results is shown. The interaction
diagram describes the role of anti-PD-L1 and buffer in either promoting (green) or inhibiting (red) each
metaphenotype. Broadly, the two treatments offset one another by inhibiting the metaphenotypes that the
opposite treatment promotes. The two exceptions, starve glucose and immune desert, are both non-aggressive
phenotypes. This summary schematic illustrates the utility of defining metaphenotypes in the context of
treatment to provide insight into immune-escape dynamics.
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4 Methods
The mathematical model here builds on an experimentally validated hybrid discrete-continuum multiscale
model of cancer metabolism that incorporates the production of acid and acquired resistance to extracellular
pH8–10,58. The model includes three diffusible molecules (oxygen, protons, glucose), four cellular automata
agents (tumor cells, normal cells, immune cells, and blood vessels), and two treatments (anti-PD-L1 im-
munotherapy and a pH buffer such as sodium bicarbonate).

4.1 Model Parameterization
Values for parameterization are shown in Table 1. Values for parameters are typically identical to previous
publications using the non-immune metabolism model8,9, except where parameter values are shown in brack-
ets. In these cases, a parameter sweep is performed across the full range in order to determine the effect
of the parameter on outcomes and test hypotheses. New parameters developed in this manuscript (i.e. the
immune module) are shown below the solid line.

5 Box 1: Methods
5.1 Baseline mathematical model
An overview of the mathematical model is shown in figure 2. The model simulates a two-
dimensional slice through a tumor via a coupled cellular automata (CA) and partial differential
equation (PDE) model. Vasculature is modeled as a set of point sources, with spacing consistent
with those measured in normal stroma8. As timescales of metabolism and cell-scale dynamics (e.g.
proliferation) vary significantly, we solve the PDEs to reach steady state between CA timesteps.
The model includes several diffusible molecules: oxygen, acid, and glucose (figure 2A, yellow boxes).
The concentration of each diffusible is modeled by the following diffusion-production-consumption
equation:

∂C
∂ t

= D∇2C+ f (x, t) (1)

where C represents the diffusible molecule concentration, D is the diffusion constant, and f (x, t)
is the molecule-specific rate of consumption/production of each particular molecule. For example,
oxygen consumption ( fO) by cells is given by Michaelis-Menten dynamics:

fO =−VO
O

O+ kO
(2)

where kO is the oxygen concentration for half-maximal oxygen consumption and VO is the maximal
oxygen consumption by cells. Glucose consumption is given by the following modified Michaelis-
Menten equation:

fG =−
(

pGAo

2
+

27 fO

10

)
G

G+ kG
(3)

where pG is the heritable trait which represents aerobic glycolysis and its resultant excessive
glucose consumption. Ao is the ATP production rate in normal cells, kG is glucose concentration
for half-maximal glucose consumption. ATP production rate is given by:

fA =−
(

2 fG +
27 fO

5

)
, (4)

12



and proton production rate given by:

fH = kH

(
29(pGVO + fO)

5

)
. (5)

5.2 Phenotypic drift
Both normal and tumor cells undergo a decision process in figure 2B, involving cell cell cycle
dynamics, proliferation and phenotypic drift. Cells with low ATP efficiency or cells which are
maladapted for acidosis die. Cells take on three phenotypic traits: acid resistance (pH), glycolysis
(pG), PD-L1 expression (pP). Phenotypes may drift upon cell division as follows:

pi(t +∆t) = pi(t) · (1+∆i)
(U(−1,1)) (6)

where i ∈ {H,G,P}, representing acid-resistance, glycolysis, PD-L1 phenotypes respectively (see
Table 1). U(−1,1) represents a uniform probability distribution drawn on the interval -1 to 1 and
∆t is the timestep (2 hours). Phenotype variation rate parameters (∆i ∈ [∆G,∆H ,∆P]) are shown in
Table 1.

5.3 Immune recruitment model
Immune cells are recruited in proportion to the current tumor size a few days prior, N(t − τT )) at
a rate αT until the number of T-cells equals or exceeds this value. T-cells undergo a natural decay
rate if they have not encountered a tumor cell in the past βT number of days.

T (t +1) =


αT N(t − τT )−

1
βT

T (t), N(t − τT )> T (t)

T (t)− 1
βT

T (t), N(t − τT )≤ T (t)
(7)

Tumor cells have several mechanisms for immune evasion in the mathematical model: PD-L1
and acid inactivation.

5.4 T-cell viability in high acid
Recent results from Pilon-Thomas et. al. have suggested that acid does not affect T-cell viability
but instead impairs activation25. Low pH arrests T-cell cytokine and chemokine production (a
measure of activation) . Thus, we model probability of successful engagement of a cancer cell by
a T-cell depends on the microenvironmental pH:

Pe =
1

1+ e−σp(H−Hp)
(8)

where H is the pH value, Hp is the half-max engagement probability and σp represents the pH at
which engagement probability is half its maximum value. Secondly, exocytosis of lytic granules
is impaired in low pH59, causing increased time to kill targets in low pH. The probability that a
tumor cell successfully inactivates a T-cell due to low acid is given by:

PAI = 1− Pe∆t
de
(
1+ e−σe(H−He)

) (9)

where de represents the minimum engagement time duration, modulated by acid concentration,
H60. He is the half-max engagement time and σe is the steepness parameter, and ∆t is the length
of a single time step (2 hours).
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T-cells are also assumed to undergo death at higher rates in low glucose concentrations. This
component of the model was parameterized using experimental data from ref. 55, where probability
of death after two days is fit to the following equation:

L(G) = (L0 −Li)eGLg +Li, (10)

where L0 and Li T-cell survival rate in low and high glucose concentrations, G, with steepness
parameter Lg (see figure 5E).

5.5 Treatment
Two treatments are considered: anti-PD-L1 and buffer therapy. Anti-PD-L1 is modelled as a
diffusible molecule (eqn. 1), with tumor cell uptake of bound PD-L1 (pB) at rate DA and natural
decay at rate γA (see Table 1). Bound PD-L1 in each tumor cell is limited to the range pB ∈ [0, pP],
where T-cell kill rate, PK , is a function of the difference between constitutively expressed and
bound PD-L1 (see figure 5B). Cell internal bound PD-L1 decays at rate γP. Buffer therapy is
modeled as a change in proton buffering coefficient, kH :

kH = 0.00025(1−B(t)), (11)

where B(t) is the time-dependent administration of buffer therapy, and the baseline value of the
buffering coefficient is kH = 0.00025 (see Table 1 and ref. 8).

5.6 Local Neighborhoods
The model is carried out on a two-dimensional lattice where each tumor, normal, or immune cell
occupies a single lattice location, (x,y). The cell’s local neighborhood is a set of lattice locations
defined in relation to the focal cell’s location, defined as Nm (Nm = 8 for a Moore neighborhood).
When the focal cell undergoes division a daughter cell is placed in a random neighboring grid point
and the parent cell remains on the original lattice point. The cell may undergo apoptosis (death)
and is removed from the domain. After each generation cells are shuffled and iterate through in
random order in future time steps.
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6 Box 2: Defining metaphenotypes
Let T (x,y) be a two-dimensional grid representing the time since the last T-cell interaction has
occurred within the local neighborhood of grid location (x,y). We define the tumor-immune inter-
action grid, I(x,y), where I = 1 if an immune cell has traversed within a cancer cell’s neighborhood
within the previous Tw days and I = 0 otherwise at the current timestep, t.

I(x,y) =

{
1, if T (x,y)≥ t −Tw

0, otherwise
(12)

Metaphenotypes (MP) are defined in such a way that MP expression is scaled from zero to one
and each cell can take on multiple MP: M⃗ = {m1,m2, . . . ,m7} where mi ∈ [0,1]

6.0.1 MP1: Immune Desert
We first consider the absence of immune interaction: the immune desert metaphenotype, MP1:

MP1(x,y) = 1− I(x,y) (13)

6.0.2 MP2: PD-L1 Attack
Next, we classify cells which employ the PD-L1 counter-attack, defined as high PD-L1 expression
(low probability of T-cell kill) with a recent T-cell interaction:

MP2(x,y) = (1−Pk)︸ ︷︷ ︸
Prob. avoiding T-cell kill

× I(x,y)︸ ︷︷ ︸
recent T-cell interaction

(14)

6.0.3 MP3: Mooch PD-L1
In contrast to MP2, cells which interact with T-cells but have low PD-L1 expression can rely on
(“mooch”) neighboring cell protection. Here, the metaphenotype is proportional to neighborhood
PD-L1 expression.

MP2(x,y) = (1−Pk)︸ ︷︷ ︸
Prob. T-cell kill

× 1− I(x,y)︸ ︷︷ ︸
no T-cell interactions

×max
j∈Nm

PD-L1 j (15)

where Nm is a Moore neighborhood of Nm = 8 neighbors.

6.0.4 MP4: Self-Acidify
As cell increase glycolytic capacity (phenotype value pG), more protons are added. The per cell
proton production rate is given by:

pR = fH(1−B(t)) (16)

where proton production (see Methods eqn. 5) is scaled by buffer treatment concentration, B(t).

MP4(x,y) = PAI(x,y)︸ ︷︷ ︸
Probability of Acid-Inactivation

× p̄R︸︷︷︸
scaled proton production rate

× I(x,y)︸ ︷︷ ︸
recent T-cell interaction

(17)

where the production rate, p̄R, is normalized such that any value for phenotype above the buffering
capability of a vessel is assumed to be mostly self-acidify metaphenotype (MP4), while below is
assumed to be mostly mooch acid (MP5).
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6.0.5 MP5: Mooch Acid
Similarly, the mooch acidify metaphenotype occurs when the probability of T-cell acid-inactivation
is high, but where the highly acidic microenvironment is not due to self-acidification.

MP5(x,y) = PAI(x,y)︸ ︷︷ ︸
Probability of Acid-Inactivation

× (1− p̄R)︸ ︷︷ ︸
scaled proton production rate

× I(x,y)︸ ︷︷ ︸
recent T-cell interaction

(18)

This metaphenotype typically occurs early in simulations in empty regions without tumor or
vasculature.

6.0.6 MP6: Proliferate Fast

MP6(x,y) =

1−
Dx,y

Tm︸︷︷︸
fraction of cell cycle completed

× I(x,y)︸ ︷︷ ︸
recent T-cell interaction

(19)

where Di is the time until next division for the cell at location (x,y) and Tm is the inter-mitotic
cell division time for a metabolically normal cell.

6.0.7 MP7: Starve Glucose
Tumor cells may also compete with T-cells to starve immune cells of glucose, giving rise to the
following metaphenotype:

MP7(x,y) = Pg︸︷︷︸
Prob. T-cell dies in low glucose

× I(x,y)︸ ︷︷ ︸
recent T-cell interaction

(20)
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Table 1. Model Parameterization

Parameters Value Units Description
δx 20 µm Diameter of CA grid point
pD 0.005 1/d Normal tissue death rate
p∆ 0.7 1/d Death probability in poor conditions
pn 5e-4 1/d Necrotic turnover rate
DO 1820 µm2/s Diffusion rate of oxygen
Dg 500 µm2/s Diffusion rate of glucose
DH 1080 µm2/s Diffusion of protons
OO 0.0556 mmol/L Oxygen concentration in blood
GO 5 mmol/L Glucose concentration in blood
pHO 7.4 pH pH of blood
VO 0.012 mmol/L/s Maximal oxygen consumption
kO 0.005 mmol/L Half-max oxygen concentration
kG 0.04 mmol/L Half-max glucose concentration
kH 2.5e-4 - Proton buffering coefficient
Ad 0.35 - ATP threshold for death
Aq 0.8 - ATP threshold for quiescence

pH,min 6.1 pH Maximal acid resistance phenotype
pH,norm 6.65 pH Normal acid resistance phenotype

∆H 0.003 pH Phenotype variation rate (acid res.)
pG,max 50 - Maximal glycolytic phenotype

∆G 0.15 - Phenotype variation rate (glycolysis)
τmin 0.95 Days Minimum cell cycle time
σmin 80 µm Minimum vessel spacing
σmean 150 µm Mean vessel spacing
vmean [5, 100] Days Vessel stability
pang [0, 1] - Angiogenesis rate
TM 1 - Probability T-cell moves
τT 4 - T-cell response delay
αT [1e-4,1e-1] - T-cell recruitment rate
βT 10 Days Non-activated T-cell decay

pP,min 5 - Maximal PD-L1 phenotype
pP,norm 2.7 - Normal PD-L1 phenotype

∆P [0,1] - Phenotype variation rate (PD-L1)
de 0.042 Days T-cell engagement duration
He 6.6 - half-max pH T-cell engagement time
σe 4 - steepness of T-cell engagement time
Hp 6.6 - half-max pH T-cell engagement probability
σp 6 - steepness of T-cell engagement probability
Li 65.35 percent T-cell survival rate in high glucose
L0 21.78 percent T-cell survival rate in low glucose
Lg -16.67 percent T-cell glucose deprivation parameter
DA 100 µm2/s Anti-PD-L1 diffusion parameter
γA 0.5 1/s Anti-PD-L1 natural decay rate
γP 0.001 1/s Cellular bound PD-L1 decay rate
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