
  

 
Figure 1: Tumor growth and regression. Averages of 50 stochastic 
simulations of slow (w = 0.1; blue), medium (w = 0.2; red), and fast (w 
= 0.3; purple) growing tumors shown in dashed lines. Therapy is 
administered at identical tumor burden (solid lines) to compare 8 cycles 
of MTD (thin lines) and LDM (thick lines) chemotherapy schedules with 
equivalent total dose. For all growth rates, LDM schedules result in 
increased tumor cell reduction. 

  

Abstract. We review the classic tumor growth and regression 
laws of Skipper and Schable based on fixed exponential growth 
assumptions, and Norton and Simon’s law based on a Gompertzian 
growth assumption. We then discuss ways to optimize 
chemotherapeutic scheduling using a Moran process evolutionary 
game-theory model of tumor growth that incorporates more general 
dynamical and evolutionary features of tumor cell kinetics. Using 
this model, and employing the quantitative notion of Shannon 
entropy which assigns high values to low-dose metronomic (LDM) 
therapies, and low values to maximum tolerated dose (MTD) 
therapies, we show that low-dose metronomic strategies can 
outperform maximum tolerated dose strategies, particularly for 
faster growing tumors. The general concept of designing different 
chemotherapeutic strategies for tumors with different growth 
characteristics is discussed.  

I. INTRODUCTION TO TYPE OF PROBLEM IN CANCER 

 The most influential quantitative mathematical model of 
tumor growth and chemotherapeutic response was developed 
by Skipper and Schabel [1] in the 1960-70s. Their model 
was based on a series of careful in vitro experiments carried 
out using the L1210 mouse leukemia cells lines in which 
they observed that the cell numbers doubled at a fixed rate, 
implying constant exponential growth [2]. Thus, Skipper’s 
first law states that the doubling time of proliferating cancer 
cells is constant, forming a straight line on a semi-log plot 
[3]. A more subtle consequence of fixed exponential growth 
is encapsulated in Skipper’s second law which states that cell 
kill by chemotherapeutic agents follows first order kinetics. 
This implies that the percent of cells killed at a given drug 
dose is constant, proportional to the growth rate, regardless 
of tumor size or overall tumor burden [4]. If a given dose of 
drug reduces the number of cancer cells from 106 to 105 
(killing 900,000 cells, or 90% reduction), the same therapy 
acting on 104 cells will reduce it to 103 cells (killing 9000 
cells, or 90% reduction). Known as the log-kill law of 
chemotherapeutic response [5] (one log-kill is equivalent to 
90% reduction), it has important therapeutic implications. If 
repeated, the third dose reduces the remaining 103 cells 
down to 102 cells (killing 900 cells), the fourth from 102 to 
10 (killing 90 cells), and the fifth from 10 to 1 (killing 9 
cells). Thus, each round of identical chemotherapy kills 
fewer and fewer numbers of cells, making complete 
eradication of the tumor increasingly difficult, independent 
of any other effects. These two laws are all simple 
consequences of the hypothesis of constant exponential 
growth of the tumor volume (which typically becomes 
visible at roughly 1cm3, or 109 tumor cells), 𝑉 𝑡 =
	𝑉% exp 𝛼𝑡 , with fixed growth rate 𝛼. A third simple 
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consequence is that tumors with higher growth rates (larger 
values of 𝛼) should also have steeper regression. This is 
evident in the regression curves of Figure 1 which have 
smaller negative slope higher up on the growth curve 

(slower growth regions) than lower on the growth curve.  

Since most tumors do not grow at a fixed exponential rate 
throughout their entire growth history [5, 6], a more 
generally applicable model, developed subsequently by 
Norton and Simon [7], is based on Gompertzian growth of a 
tumor [6,8], which is exponential growth, but with an 
exponentially decaying growth rate 𝛼 𝑡 = 𝛼%exp −𝛽𝑡 . 
The decaying growth rate can be viewed partly as a simple 
consequence of the fact that the ratio of tumor surface area 
(SA) to volume (V) scales like ./

0
~	1/𝑅, for a spherical 

tumor of radius R. Since tumors need to supply their volume 
with nutrients and oxygen which they (mostly) accomplish 
via diffusion through their outer surface, as R increases, this 
becomes more challenging causing the tumor growth to slow 
down (although there are certainly strategies the tumors 
develop to partly mitigate this effect). Smaller regression 
rates for these larger, more slow growing tumors is also 
consistent with this scaling law since lethal toxins enter the 
tumor core primarily through its surface. For 𝛽 = 0	the 
Gompertzian model reduces to the previous model of 
Skipper and Schabel.  The new model gives rise to 
Gompertzian sigmoidal shaped growth curve [9] shown in 
Figure 1 for three different tumor types (slow growth, 
medium growth, fast growth). The Norton-Simon hypothesis 
(now viewed as a bedrock principle) says that tumor cell 
reduction, if administered starting at time 𝑡6, is proportional 
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Figure 2: Shannon entropy as an index to compare sample 1-
cycle 4-day treatment strategies. Chemotherapy regimens can be 
simulated for a range of dose, density, and entropy values. Pictured 
from top to bottom are a range of representative regimens from low 
entropy (i.e. high dose, low density) to high entropy (i.e. low dose, high 
density) for a cycle of N = 4 days. On each ith day, treatment of dose ci is 
administered. The treatment strategy’s Shannon entropy, E, is calculated 
according to equation 2 and the total dose, D, is the sum of all daily 
doses (equation 1). It should be noted that LDM-like regimens 
correspond to a high entropy value (e.g. bottom graph). 

 

to the unperturbed growth rate 𝛼 𝑡6 . Thus it references the 
instantaneous growth rate of the unperturbed tumor at the 
time one cycle of chemotherapy is initiated [7,10,11].  

Examples of tumor cell reduction are shown in Figure 1. 
Since the timescale on which a single cycle of chemotherapy 
is administered is short compared to the timescale on which 
a tumor size changes significantly, the (quasi-steady) 
approximation is not unreasonable and can be viewed as a 
generalization of Skipper’s laws for time-dependent growth 
rates. However with the potential application of several 
cycles starting at times 𝑡7, 𝑡8, … perhaps of varying lengths 
and doses (metronomic vs. maximum tolerated dose 
[12,13]), and with unperturbed growth rates and tumor sizes 
differing at the beginning and end of each cycle, the 
quantitative efficacy of this approximation begins to break 
down. The question then arises as to what would be an 
optimal chemotherapeutic scheduling strategy (varying 
concentration, dose, density) that accommodates the full 
complex dynamical range of features associated with tumor 
cell kinetics?  

II. ILLUSTRATIVE RESULTS OF APPLICATION OF METHODS 

The total dose, D, of any arbitrary chemotherapy schedule 
is the sum of the nondimensional doses, ci (0 ≤ c ≤ 1), on 
each of the i days (some of which can be zero). N is the 
number of days in a given cycle (also known as the 
intercycle time): 

𝐷 = 	 𝑐;<
;=6  (1) 

The dose density, d, of a regimen can be found by 
summing the number of days where a non-zero dose is 
delivered, and dividing by the intercycle time in days, N. The 
density is a non-dimensional parameter such that 0 ≤ d ≤ 1.  

The quasi-steady approximation of the Norton-Simon 
hypothesis can be extended to find optimal chemotherapy 
schedules over the full course of treatment (see [14]). Norton 
and Simon relate tumor regression to the total dose 
delivered, but the relationship between dose (ci) and density 
(d) is not made clear by the hypothesis. The relationship 
between dose and density has been studied by Prokopiou 
[15] (termed “fractionation”) in radiotherapy by using the 
proliferation saturation index (PSI, the ratio of volume to 
tumor carrying capacity) to predict radiation response and to 
personalize optimal radiotherapy schedules. The PSI 
(inversely related to the growth rate) of the tumor is found to 
be a good prognostic factor for radiation response. Figure 2 
depicts a series of chemotherapeutic strategies quantified by 
the Shannon entropy, E, of the strategy (2), for a range of 
dose, density, and entropy values [16]. Low-dose 
metronomic strategies generally correspond to high-entropy 
strategies, whereas maximum tolerated dose strategies 
correspond to low-entropy strategies. In Figure 3 we show a 
histogram of all possible different entropy-based strategies, 
plotted as a function of tumor-cell reduction. The graph 
shows a clear tendency for higher entropy strategies to 
produce greater tumor-cell reduction. This is discussed in 
more detail in [17]. Entropy is calculated from the formula: 

𝐸 = 	 𝑐;<
;=6 log 𝑐; (2) 

Figure 4 points to the fact that over multiple cycles, higher 
entropy strategies have a bigger impact on faster growing 
tumors (purple) than on slower growing tumors (blue), as 
evidenced by the larger slope of the regression line. 

The concept of choosing dosing schedules and strategies 
based on tumor growth rates is not currently done in medical 
practice and might prove to be a fruitful idea to test further 
in clinical trials focused on this question. Mathematical 
models and computer simulations can play an important 
supportive role in helping to predict possible responses and 
in forming hypotheses to test further. 

III. QUICK GUIDE TO THE METHODS  
The mathematical model used for the results shown is 

based on a finite-cell stochastic Moran process [18,19] with 
cell-cell interactions based on a Prisoner’s Dilemma payoff 
matrix A: 

𝐴 = 	 𝑎 𝑏
𝑐 𝑑 ;				 𝑐 > 𝑎 > 𝑑 > 𝑏  (3) 

Fitness of the healthy cells H (cooperators), and the 
cancer cells C (defectors)  are given by: 
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Figure 3: High entropy, LDM-like chemotherapies outperform low entropy MTD-like chemotherapies. A pictorial histogram is plotted where each 

chemotherapy schedule pictorial representation (colorcoded from red: low entropy to blue: high entropy) is arranged by tumor cell reduction (TCR). All 
regimens are equivalent total dose (D = 0.3), monotonically decreasing, and are repeated for 8 cycles of chemotherapy for a slow growing tumor (w = 0.1). The 
histogram clearly shows a color-shift from red toward blue for low TCR, ineffective therapies toward high TCR, effective therapies. High entropy therapies 
outperform low entropy therapies. The data was fit to a Weibull distribution (equation shown in panel inset; k = 14.251, λ = 65.882), overlaid in green. 

 
Figure 4: High entropy strategies lead to an increase in tumor 

regression. TCR, (averages of 25 stochastic simulations for total dose 
delivered D = 0.3) and entropy (E) is shown for a 16 cycles of 
chemotherapy, repeated for slow (w = 0.1, blue), medium (w = 0.2, red), 
and fast growing tumors (w = 0.3, purple). High entropy strategies 
outperform low entropy. Fast growing tumors (purple) has the highest 
slope (dashed lines) highlighting the relative advantage of high entropy 
strategies for higher tumor growth rates. 

𝑓I = 1 −	𝑤I +	𝑤I 	
L <M;M6 NO;

<M6
 (4) 

𝑓P = 1 −	𝑤P +	𝑤P 	
Q <M; NR(;M6)

<M6
 (5) 

The parameters wH  and wC (0 ≤ w ≤ 1) measure the 
strength of the selection pressure on each population of cells, 
Selection is initially equivalent (wH  = wC = w), and altered by 
the dose concentration, c, during therapy as follows: 

𝑤I = 1 − 𝑤 𝑐 + 𝑤 (6) 

𝑤P = 1 − 𝑐 𝑤 (7) 

If there are ‘i’ cancer cells and N-i healthy cells (N is the 
total population of cells), then the transition probabilities at 
each step in the Moran process are given by [20]: 

𝑃;,;N6 = 	
;VW

;VWN(<M;)VX
	<M;
<

 (8) 

𝑃;,;M6 = 	
(<M;)VX

;VWN(<M;)VX
	 ;
<

 (9) 

𝑃;,; = 1 −	𝑃;,;N6 − 	𝑃;,;M6	; 	𝑃%,% = 1;	𝑃<,< = 1 (10) 
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