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Abstract—In recent years there has been an increase of interest
related to collision avoidance techniques for unmanned aerial
vehicles. Many approaches have been proposed but very few
have been tested in high density, fixed speed test conditions. Our
approach uses fuzzy logic to determine an appropriate avoidance
maneuver after a possible collision is detected. Initially fuzzy
logic was also used to detect possible collisions, the reasons this
level was removed from the final results are detailed within.
This method was chosen for its adaptability, ease of implemen-
tation, and robustness with inadequate sensing techniques. This
approach is explained in detail and the simulated results are
presented after testing on two different field sizes, each with
four levels of plane density.

Index Terms—UAV; collision avoidance; fuzzy logic;9

I. INTRODUCTION

Collision avoidance techniques for unmanned aerial vehicles
have been a popular area of study in the field of intelligent
robotics. In order for these vehicles to be used in areas
such as surveillance or exploration, the vehicles must be able
to autonomously react to static or dynamic obstacles while
maintaining an efficient path. Many approaches have been
taken, including path planning, potential fields, geometric and
fuzzy logic methods. We first outline the problem in section
two, then move on to describe the various approaches to
solving the problem, including our chosen approach of using
fuzzy logic to avoid detected collisions.

II. PROBLEM STATEMENT

Many algorithms exist to solve the general problem of UAV
collision avoidance, but few of these algorithms have been
tested in similar test conditions. In order to synthesize results
and compare many algorithms in a single simulation, Holt et
al. developed a simulator for comparison of various algorithms

[1]. By using the simulator, different algorithms can be tested
using the same metrics and flight constraints on the same
platform. All algorithms are tested in two dimensions, with
UAVs traveling at a constant speed of 25 miles per hour.
Turning radius was modeled after an EasyStar RC aircraft
and limited to 22.5 degrees per second. Telemetry updates
are retrieved once per second, and new waypoints directing
the UAV can be sent once per second. Environmental factors
are also excluded from simulation.

The simulator was designed to test algorithms for real-time
calculations. Regardless of how long calculations take, the
simulator runs in real-time and new telemetry updates will be
generated once per second. If no new waypoints are generated
from the calculations in time, the current heading will be
followed until a waypoint is received.

Two metrics were chosen to determine effectiveness. A near
miss is defined as one UAV traveling within a radius of 12
meters of another UAV. This is meant to represent a collision,
as 12 meters represents approximately the distance travelled
in one timestep, and should be avoided at all costs. Similarly,
a conflict is defined as one UAV traveling within a radius of
24 meters of another UAV, or approximately two timesteps.
This represents the danger zone and should be avoided, but is
not as critical as a near miss. Both are shown in Figure 1.

A separate metric was chosen to provide a measure of
effectiveness. This is determined by the number of goal
positions, or waypoints that a UAV achieves. An overly
cautious algorithm may avoid near misses or conflicts very
well, but the overall number of waypoints reached will be
decreased. A delicate balance of effectiveness and efficiency
for each algorithm must be achieved. The simulation time
limit is ten minutes, and based on the number of near misses
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Fig. 1. Near Miss and Conflict

and waypoints reached, an algorithm’s effectiveness can be
measured. Note: for the purposes of this paper, parameters
were optimized for low collisions (high effectiveness). As
with any algorithm, parameters can be adjusted for better
efficiency if some collisions are an acceptable sacrifice for
better efficiency.

Previous research has tested Mixed Integer Linear Program-
ing (MILP), Dynamic Sparse A* Algorithm, and Artificial
Potential Fields in this simulation [1]. Each algorithm was
run in eight different field situations: a 500m square field and
a 1000m square field, each tested with 4, 8, 16 and 32 planes.
This will allow for easy comparison of methods presented here
to those previously tested.

III. LITERATURE REVIEW

The literature review is split into the following sections:
path planning, potential fields, proportional navigation, fuzzy
logic, and hybrid approaches. Within these sections, the pre-
viously tested Mixed Integer Linear Programming (MILP),
Artificial Potential Fields (APF), A* Grid Based Algorithm
will be reviewed and explored for strengths and weaknesses.
As mentioned in [1], the general goal of this research is to
compare various algorithms using the same simulation and
metrics, as outlined above. The next section will provide a
comprehensive literature review of fuzzy logic as it has been
used in collision avoidance. The justification of this approach
will be outlined in the methods section.

A. Path Planning

Path planning methods have also been researched using
different techniques for finding an optimal path such as Mixed
Integer Linear Programming (MILP) and A* search. This
approach tries to plan a collision free path for each plane in
the field space. There are some other path planning techniques,
but these are mainly used to increase efficiency in the chosen
path, not for finding a collision-free path.

1) MILP: [2] successfully used MILP for a solution to
single and multi-vehicle path planning algorithm with both
static and moving obstacles. One of the major advantages of
MILP solvers is the ability to limit inputs and outputs; this is
useful in UAV collsion avoidance where the maximum turning
radius is clearly defined. A receding horizon is a common
implementation of the MILP approach. This strategy limits the
solution to a specified number of time steps into the future,
as opposed to solving the entire system, thus an optimal path
is found multiple times. A fixed arrival time approach finds
an optimal path once but for the entire field. This method
is often limited by heavy computational load; the solver is
not guaranteed to come up with a solution, especially for
many UAVs in a relatively small space, before collisions occur
[2]. For this reason the receding horizon approach is widely
used, but still not infallible. A horizon time limit should not
be so short that the vehicles will not have sufficient time to
react and avoid collisions, nor should the time be so long
that heavy computational load is still an issue. There are
some optimization techniques that have been used to counter
the issues that come with truncating the horizon time [3].
According to the simulation from Holt et. al., MILP was
tested using a licensed online MILP solver in high density
testing conditions. The receding horizon approach and other
optimization techniques were used, however, the system still
failed for more than 8 vehicles in a 500m square airspace
[4]. The optimization techniques used were solver time limit,
specifying the max amount of time before reverting to a sub-
optimal solution, and the use of a ”loiter cycle” which the UAV
enters until the solver can come up with a solution. The latter
solution is not ideal when evaluating an algorithm’s efficiency.

2) A* Search Algorithm: Another path planning algorithm
is that of A* search, or the branch and bound method. In
this technique, the field space is divided into a grid and only
adjacent squares are considered as a next point along the
path. This consideration of other nodes is called branching,
estimating the best path from the current square is known as
bounding. When a square is branched, the cost is computed
based off of a heuristic cost function. Each square with its
corresponding cost is inserted into a tree structure, typically a
heap, which stores the minimum element as the root. As the
heap is updated from node to node, the lowest cost path is
always at the top of the heap. If the path that the algorithm is
considering is no longer the lowest cost, a lower cost option is
readily available, and that path is followed until either a lower
cost path is found or the goal point is reached [5]. One of
the major issues with the A* search approach is determining
an appropriate cost function. As with other path planning
techniques, computation time is an issue for real-time collision
avoidance. There are some ways to lower computation time,
especially if the optimum solution is not required but a nearly
optimal path is acceptable.

Other literature has used the A* search to determine the best
path for a humanoid robot to place its footsteps in an obstacle
littered space [6]. In this case, the foot placement options were
limited to 15 locations from each previous footstep.



Fig. 2. The degrees of freedom allowed for the humanoid robot’s right foot
[6]

For their path, specified at 18 footsteps, the unconstrained
A* search tree would contain approximately 1021 nodes. By
limiting the options that A* considers, the final tree contained
around 830,000 nodes, significantly less than the predicted
1021 nodes. By limiting the degrees of freedom allowed in the
bounding step, the computation time is decreased dramatically,
however, this approach is still too compuationally demanding
for high density systems. As seen in [7] and [5], this algorthm
was tested in situations of varying plane density using the
maximum turning radius as a limitation on the degrees of
freedom allowed. In each of these cases, A* performed well
for low density airspaces, but still yielded many near-misses
for dense systems.

B. Potential Fields
1) Artificial Potential Fields: The potential field path plan-

ning approach can be split into two different categories: global
and local. The global solution requires a priori knowledge
of the field and location of the obstacles within that field.
Negative charges are applied to the obstacles and the goal
point is assigned a positive charge. The robot is then driven
to the goal point by the forces equal to the negative gradient
of the field [8].

Similar to other global path planning algorithms, global
potential field path planning has very high computation costs,
especially with robots that have many degrees of freedom,
which makes it unsuitable for real-time path planning. The
local potential field approach is much more suitable in real-
time solution planning. Real-time, local solutions allow for
both static and dynamic obstacles, making solutions much
more reactive and realistic. The local potential field approach
is set up similarly to the global approach, the path for the
robot determined by the sum of forces acting on the robot
[10]. Potential field path planning methods are computation-
ally efficient for finding a local obstacle-free path, however
this method is not without its faults. As [8] clearly asserts,
there is a well-documented problem with the potential field
approach: local minima. When a robot experiences equal and
opposite forces acting upon it, the robot can become stuck
in a local minimum. In purely dynamic obstacle avoidance
environments, the local minimum problem is likely to have

Fig. 3. The gradient along which the UAV is directed [9].

resolved itself by the next timestep, however the interval
between timesteps might be enough that a possible collision
becomes unavoidable.

2) Total Field: Several implementations of UAV collision
avoidance using real world applications have also been used
in addition to simulation studies. One approach uses magnetic
fields and magnetic sensors to detect nearby UAVs [11].
The goal of this approach is to have decentralized collision
avoidance. A gradient is computed based on objects sensed,
and the UAV will be directed to travel in opposition to
the gradient. Field size decreases by the inverse of distance
cubed. The results were found through simulation, but some
real world magnetic sensor readings and reaction tests were
conducted to see if the movements seen in the simulator were
realistic. These methods worked well for collision avoidance,
but yielded sub optimal paths.

For the purposes of this paper, any algorithms are tested in
simulation, but the research goal of developing a decentralized
method of collision avoidance is seen as advantageous. As
Sigurd states, the problem of collision avoidance rapidly
becomes intractable using centralized methods as the number
of vehicles increases, making a decentralized approach where
each vehicle is responsible for its own trajectory planning
desirable [11].

C. Proportional Navigation
Through the course of literature review, several other

types or variations of algorithms were considered. One such
algorithm, Proportional Navigation-Based Optimal Collision
Avoidance Guidance for UAVs is widely used in missile guid-
ance problems, and it can be used in collision avoidance by
guiding the relative velocity vector to the collision avoidance
vector [12]. The research proposed a collision avoidance law
based on conventional Proportional Navigation (PN) guidance



law. First, a collision avoidance vector is defined and the
heading of the aircraft is directed toward this vector. The total
approach is called Proportional Navigation-based Collision
Avoid Guidance (PNCAG). The approach uses the collision
cone geometric method to determine when to enter the col-
lision avoidance mode [13]. Several conditions for collision
avoidance must be met including a range between aircraft and
obstacle greater than safety distance, the direction of relative
velocity must be outside of the collision cone, and the obstacle
must be located behind the direction of the relative velocity
vector. These techniques have shown promising results in both
efficiency and effectiveness.

D. Fuzzy Logic

A common technique used in ground robot collision avoid-
ance is that of fuzzy logic. Fuzzy logic is a form of many
valued logic which instead of outputting a 0 or 1, true or false
value, instead outputs a degree of truth. Fuzzy membership
sets will map the crisp value to a fuzzy value. For example,
if height:short is defined as 50 - 70 inches, and height:tall
is defined as 65 - 85 inches, a person could belong to both
sets height:short and height:tall because fuzzy logic allows
values to be a member of two sets at once [14]. This is a
more intuitive form of logic and a better represenation of the
way humans think. A person is not always exclusively short
or exclusively tall, rather someone is ”kind of tall”. Similarly,
fuzzy logic can be applied to collision avoidance with output
membership sets such as ”very left” or ”slightly right.”Using
a fuzzy logic system also allows for sensor fusion, when data
from multiple sensors are combined.

For these reasons, fuzzy logic research is frequently used
and shown to work in mobile ground robots where sensing
techniques are generally inexpensive and inaccurate. Sensor
fusion has been accomplished using fuzzy logic in a sense-
act approach based on multiple sensors distributed around a
2-D ground robot [15].This approach was used in situations
containing only one robot and stationary obstacles. The mobile
ground robot was run through a path containing obstacles
where the smoothness of the path was evaluated. Advantages
of the fuzzy logic approach are intuitive linguistic terms
and a smaller computational load than APF and many other
approaches. Fuzzy logic is also useful for unknown and semi-
unstructured environments. Sense-act is uninterrupted motion
with short development time and incorporates flexibility, easy
to adjust parameters.

E. Hybrid Approach

1) Fuzzy Logic / Electrostatic Potential Fields
Many approaches to UAV collision avoidance use a combi-
nation of two or more methods. An example of one of these
hybrid approaches used fuzzy logic to control an autonomous
mobile robot(AMR) while travelling along a pre-planned path
generated by a total field path planning technique. A 2-layer
fuzzy logic (FL) interface was combined with an electrostatic
potential field path planner (EPF) to provide real-time mobile
robot navigation in a 2-D dynamic environment [16]. The

first layer of fuzzy logic provided a sensor fusion system to
combine data from several sonar sensors returning two fuzzy
variables, direction and distance in four directions:front, back,
left, and right. The second layer provided an obstacle detection
module that outputs the position and degree of possibility
which a collision may occur. This information is combined
in motion control module with the path planner output. If an
obstacle blocks the pre-planned EPF path, collision avoidance
maneuvers affecting heading and speed are used to avoid the
detected collision.

This EPF/FL approach combined planned and reactive be-
havior into one algorithm. EPF path planning reacts slowly
to unknown moving obstacles. The EPF/FL approach allowed
EPF to plan the path and allowed the fuzzy inference system
to implement the path while avoiding collisions with all obsta-
cles. Some discussion was given into tuning the membership
functions, however, no analytical method guarantees optimal
selection for the Mamdani-type FL inference systems. Several
approaches have been used to tune membership functions,
such as neural nets, genetic algorithms, and neuro-fuzzy
methods, but none of these approaches guarantee as optimal
solution [16]. Additionally, advantages of EPF compare to
other potential field solutions were concluded. Collision free
paths generated by the EPF method necessarily lead the UAV
toward the goal, local minima are not generated within the
field and stagnation points within the field do not exist. The
path planned by EPF also generates an optimal minimum
occupancy path toward the goal [16].

There are several limitations when applying much of this
research to UAV collision avoidance . First, many of the
obstacles in this research are static, which is not directly
applicable to UAV collision avoidance with multiple UAVs.
Mobile ground robots have fewer limitations of freedom of
motion than do UAVs. Changes in speed, reversing direction
and a 360◦ turning radius are components of many 2-D ground
robots, all three of which are not allowed or limited in this
UAV collision avoidance research.

One example of using fuzzy logic in UAV collision avoid-
ance was found. In this scenario, a pre-planned path for the
UAV was used until a collision was detected. The obstacles
were of varying shape and size and the avoidance technique
sensed these two factors, then found an avoidance maneuver
that deviated from the pre-planned path. Again, obstacles were
static and changes in speed were allowed in determining
an appropriate avoidance maneuver. The UAV was able to
successfully avoid collisions with one or multiple obstacles in
all cases presented [17]. More information on this approach is
detailed in the Methods section, as we use this as the basis for
the formation of our fuzzy logic collision avoidance system.

2) Path Planning / Reactive Avoidance
Another hybrid approach used a hybrid of path planning and
reactive collision avoidance [18]. This algorithm calculated a
Dubins path for each plane then considered only the most
imminent predicted collision for each aircraft. The line of
sight (LOS) rate between the two planes is then increased.
When a UAV detects multiple planes that are on a collision



course with itself, it will select the most imminent collision
to avoid that has a predicted zero effort miss (ZEM) of less
than the minimum desired separation. The LOS is increased by
applying a lateral acceleration to increase the rate of rotation
of the LOS connecting these two UAVs. The UAV takes the
sharpest turn available until the collision course is avoided.

This research uses very different simulation and metrics
to test this algorithm. Planes initial positions are chosen to
be evenly spaced around a circle that dictates the outside of
the test space. A random goal point is published for each
plane, somewhere on a smaller concentric circle. This setup
eliminates the chance that random plane positions will be
chosen in the test space that are actually inside or very near
to a conflict zone of another plane. The PNCAG’s simulation
setup, however, does not take into account multiple waypoints.
Efficiency of the algorithm was measured by deviation from
initial Dubins path.

PNCAG was found to be very efficient as well as effec-
tive in reducing the number of near-misses. With an outer
circle radius of 500 meters, 20 to 60 UAVs were simulated,
giving comparable scenarios to current research goals. The
efficiencies achieved were very good (around 90 percent or
higher), however, the research cannot be completely compared
to results here because multiple waypoints were not achieved
(the values were averaged over 10 runs with a single waypoint
goal here) and the simulation starting points and goals were
chosen in an advantageous manner, as described before.

3) Passive Pre-Planning / Geometric Reactive
Another hybrid approach used a passive approach to col-
lision detection and avoidance [19]. The research split the
collision avoidance process into three steps, all defined by
two plane’s relative bearing angle: detection, avoidance, and
an optimal return to pre-planned path. After calculating the
bearings between the two planes that are at risk of colliding,
a geometric approach is used to determine the necessary
turning angle necessary to avoid a collision. The minimum
separation distance between two UAVs can also be specified.
Results of this method were promising, but only two scenarios,
overtaking and front collision were presented in this research.
This research is more applicable as an addition to algorithms
that may have limited effectiveness in these two special cases.

IV. METHODS

Methods here build upon research described previously:
work done by Dong et al. and Tsourveloudis. The two-tiered
fuzzy logic system used in Tsourveloudis [16] was combined
here with the fuzzy logic collision avoidance used by Dong
[17] to develop an efficient and effective algorithm that could
handle high-density flight situations.

A. Collision Detection System
Similar to Tsourdeveloudis’ multi level fuzzy system, the

first level fuzzy logic controller served as a method to detect
possible collisions. Considering only the closest UAV, the first
tier used fuzzy logic to output a danger value denoting the
likelihood of a collision between the current UAV and the

closest UAV. The danger value was determined by inputs of
distance to collision, (dcol), and overlap distance, (dovlp). Both
variables are defined below and a graphical representation of
these two inputs can be seen in Figure 4.

dcol = min(dA, dB) (1)

dovlp = dA − dB (2)
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Fig. 4. Common Variables

Distance to collision represents an urgency component in
detecting a collision. In low density situation, the closest UAV
may be many hundreds of meters away from the current UAV
in which case either one or both of the UAVs may have
changed course prior to reaching the determined collision
point. Overlap distance represents a timing factor; if one
UAV will reach the collision point outside of the minimum
separation distance between two planes, a collision will not
occur despite the fact that the paths of two UAVs will intersect.
Overlap distance will preserve the efficiency of the algorithm
and only avoid a collision point if a collision will actually
occur.

Only the closest UAV is considered in each time step. Using
the closest UAV is a simplification, but several improvements
upon this technique are discussed in the Future Work section.
In some cases, distance to collision and overlap distance will
not detect a possible collision. For example, two planes flying
parallel could be inside each other’s near miss zone, but the
planes do not have intersecting paths and the danger value
returned by the fuzzy logic would incorrectly be low. This
is also discussed in the Future Work along with proposed
changes. For these two reasons, the first tier fuzzy engine
was left out of the final results, in favor of a simple if
statement determining whether the closest plane is within a
certain danger radius of the current UAV. The danger radius
chosen here was 100 meters. Improvement of these techniques
is beyond the scope of this research, but highly recommended
for future work as including this level of collision detection
has the potential for vast improvements on efficiency.



B. Collision Avoidance System
The second tier used a fuzzy logic engine to determine a

change in heading for the UAV. This tier was originally only
to be entered for high danger values outputted from the first
fuzzy system. As stated above this was changed so that this
level is entered only if the closest UAV is within a danger
radius surrounding the current UAV. Many variations of the
second tier fuzzy engine were designed and implemented.
Inputs of distance between planes, bearing angle, output from
the first fuzzy system, and distance to next waypoint were all
considered as possible inputs.

Dong et al. explored fuzzy logic collision avoidance tech-
niques between UAVs and static obstacles. This work is meant
to extend the fuzzy logic approach used by Dong et al. to also
be applicable to dynamic collision avoidance. As a frame of
reference, that approach was duplicated here and results can
be found below. Dong’s approach, while very useful for static
obstacle avoidance, was not found to be an effective approach
for dynamic collision avoidance between a group of UAVs in
limited airspace.

As a matter of implementation, several changes were made
to Dong’s methods. First, the simulator used here does not
allow for a change in speed, so no fuzzy output for speed
was considered. Second, Dong’s approach limited the turning
radius to ±45◦ but the simulator here sets the limit to ±22.5◦.

Several techniques were used to improve the effectiveness
of fuzzy logic in dynamic collision avoidance. In order to
eliminate oscillations in many cases, bearing of the opposite
plane was added to the general approach described by Dong
et al. The fuzzy sets for bearing angles and distances vary
slightly as well. The output of change in heading is limited to
five fuzzy set possibilities, simplifying rule choices. The final
design of the fuzzy logic approach is outlined below. Figures
5, 6, and 7 show the ranges and implementations for each
fuzzy input and output set. The bearing angle set is identical
for the bearing angle of the current plane, θ1, and that of the
opposite plane, θ2.
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Fig. 5. Distance Fuzzy Sets

The linguistic terms used to describe and their respective

abbreviations from left to right are as follows: Very Close
[VC], Close [C], Far [F], Very Far [VF].
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Fig. 6. Bearing Angle Fuzzy Sets

The linguistic terms used to describe and their respective
abbreviations from left to right are as follows: Very Negative
[VN], Negative [N], Low Negative [LN], Low Positive [LP],
Positive [P], Very Positive [VP].
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Fig. 7. Change In Heading Fuzzy Sets

The linguistic terms used to describe and their respective
abbreviations from left to right are as follows: Very Left [VL],
Left [L], No Change [NC], Right [R], Very Right [VR].

The range of values were chosen based on the limitations
of the aircraft in the simulator. Turns are limited to ±22.5◦,
corresponding to the center of the outer fuzzy sets, ensuring
that the fuzzy engine never returns a change in heading greater
than the maximum value allowed

The rules used for the final testing in simulation are outlined
in the following tables. Tables I - IV correspond to the fuzzy
sets of VC, C, F, VF for Distance Between Planes, respectively.
θ1 corresponds to the fuzzy sets for the current plane’s bearing
angle. θ2 corresponds to the fuzzy sets for the opposite plane’s
bearing angle, or in other words the plane under consideration
for a possible collision.



TABLE I
FUZZY ENGINE RULE SET - PLANE DISTANCE VERY CLOSE [VC]

θ2
θ1 VN N LN LP P VP
VN R R R R VR VR
N R R VR VR VR VR
LN VR VR VR VR VL VL
LP VR VR VR VL VL VL
P VL VL VL VL VL L
VP VL VL VL VL L L

TABLE II
FUZZY ENGINE RULE SET - PLANE DISTANCE CLOSE [C]

θ2
θ1 VN N LN LP P VP
VN NC NC R R R R
N NC R VR VR VR VR
LN VR VR VR VR VL VL
LP VR VR VR VL VL VL
P VL VL VL VL L NC
VP L L L L NC NC

TABLE III
FUZZY ENGINE RULE SET - PLANE DISTANCE FAR [F]

θ2
θ1 VN N LN LP P VP
VN NC NC R R R R
N NC R VR VR VR VR
LN VR VR VR VR VL VL
LP VR VR VR VL VL VL
P VL VL VL VL L NC
VP L L L L NC NC

TABLE IV
FUZZY ENGINE RULE SET - PLANE DISTANCE VERY FAR [VF]

θ2
θ1 VN N LN LP P VP
VN NC NC R R R R
N NC R VR VR VR VR
LN VR VR VR VR VL VL
LP VR VR VR VL VL VL
P VL VL VL VL L NC
VP L L L L NC NC

V. RESULTS

All results were simulated using the ROS based simluator
system as described in [1]. In the simulator, a random course
file is generated which includes 50 waypoints for each plane,
including random start points. For the field sizes of 500m
square and 1000m square, each with 4, 8, 16 and 32 planes,
three random course files were generated. A note on the
simulator: although a plane may experienced a near-miss, the
plane continues to fly throughout the simulation. This is to
keep the flight situation the same throughout the simulation
run time. If UAVs left the simulation after experiencing a near-
miss, the simulator would favor an algorithm that stabilized
quicker than others. A collision avoidance algorithm may
operate very well with 24 UAVs in a 500m airspace, so
as soon as enough planes have near-misses, the simulation
would stabilize. The purpose of this research is not to find

the breaking point of an avoidance algorithm, but to test how
well an avoidance algorithms can handle high-density flight
situations.

Each course was run in the simulator without collision
avoidance for every scenario as frame of reference. Results of
Dong’s methods and the methods presented here are compared
to this base case. Tables V and VI display the base case results.

As mentioned previously, Dong et al made great progress
on collision avoidance of UAVs with static obstacles. Their
methods are repeated here for collision avoidance between
UAVs in limited airspace. Results of Dong’s methods applied
to dynamic collision avoidance are displayed below in Tables
VII and VIII.

This approach improved upon the base case in most cate-
gories and field sizes, but can be optimized further. Changes
mentioned previously, such as adding the bearing angle of the
opposite plane as a fuzzy input, were made to the methods
of Dong et al and the results are detailed below. Results from
methods used in this research are displayed in Tables IX and
X.

TABLE V
NO COLLISION AVOIDANCE RESULTS - 500M FIELD SIZE

No. Waypoints Conflicts Near Misses Distance Ratio

4 84.0 20.0 3.33 1.09
8 143.0 123.3 29.0 1.10
16 311.7 528.7 136.7 1.11
32 666.7 2448 596.7 1.11

TABLE VI
NO COLLISION AVOIDANCE RESULTS - 1000M FIELD SIZE

No. Waypoints Conflicts Near Misses Distance Ratio

4 39.7 10.0 1.0 1.04
8 92.0 43.3 12.3 1.05
16 185.7 179.7 44.7 1.05
32 378.7 665.0 159.3 1.05

TABLE VII
DONG ET AL METHODS - 500M FIELD SIZE

No. Waypoints Conflicts Near Misses Distance Ratio

4 53.3 8.0 3.3 1.81
8 71.7 58.3 14.3 2.50
16 72.3 225.0 54.0 4.72
32 56.7 686.3 172.7 7.30



TABLE VIII
DONG ET AL METHODS - 1000M FIELD SIZE

No. Waypoints Conflicts Near Misses Distance Ratio

4 32.0 7.0 1.3 1.36
8 59.3 10.0 4.0 1.52
16 107.7 355.0 27.3 1.86
32 110.3 428.7 111.3 2.77

TABLE IX
FINAL RESULTS - 500M FIELD SIZE

No. Waypoints Conflicts Near Misses Distance Ratio

4 62.7 0.0 0.0 1.67
8 82.3 0.0 0.0 1.08
16 76.0 14.7 2.3 4.27
32 50.0 64.0 12.3 7.55

TABLE X
FINAL RESULTS - 1000M FIELD SIZE

No. Waypoints Conflicts Near Misses Distance Ratio

4 39.7 0.0 0.0 1.08
8 80.3 0.0 0.0 1.17
16 128.7 1.7 0.3 1.51
32 160.3 21.0 3.0 2.07

A. Efficiency and Effectiveness

Two efficiency metrics were used to compare algorithms:
the number of waypoints reached, and the distance ratio,
α. The distance ratio is the ratio of the distances the UAV
travelled to reach the waypoints over the minimum, straight-
line travel distance.

α =
dactual
dmin

(3)

The distance ratio only takes into account the distance
travelled up to the last waypoint reached, thus this distance
is not counted in α when the simulation ends. This is also
true in calculating dmin. This metric shows how much the
plane has deviated from a near-optimal path. The number of
waypoints reached is also a metric on efficiency and helps to
balance the limitations of the distance ratio metric. The planes
attempt to reach all waypoints in order within the specified
time limit. A plane may have a near perfect distance ratio, say
it reaches one waypoint on a straight line path, but then fails
to reach another waypoint during the simulation. Although
for this individual UAV the distance ratio is near perfect,
the number of waypoints reached will be signficantly lower.
Using waypoints reached counters the distance travelled that

the distance ratio fails to take into account as the UAVs travel
at fixed speed.

As seen in the base case no avoidance results, the base
case distance ratio is not a perfect 1.0, as dmin is the
straight distance between waypoints, not the minimum flight
path which would allow for the maximum turning radius. As
expected, the distance ratio in high-density flight situations
using a collison avoidance system is significantly higher than
in the related no avoidance case. Similarly, the number of
waypoints reached in the avoidance simulation results are
significantly lower than in the no avoidance simulation results.

Effectiveness is a measure of conflict-reduction and near-
miss reduction. Again, a near-miss is defined as one UAV
traveling within a radius of 12 meters of another UAV. A note
on these metrics: for this purpose, the main goal was to achieve
zero collisions in each flight situation. Depending on the
situation, waypoints may be given higher priority. By changing
several of the rules in the collision avoidance fuzzy system to
output less extreme changes in heading, more waypoints are
achieved, the number of collisions increase slightly.

TABLE XI
DONG ET AL METHODS - 500M FIELD SIZE

No. Waypoints Distance Near-Miss Conflict
Planes Reached Ratio Reduction Reduction

4 53.3 1.81 0.0% 60.0%
8 71.7 2.50 28.5% 52.7%
16 72.3 4.72 60.5% 57.4%
32 172.7 7.30 71.1% 72.0%

TABLE XII
DONG ET AL METHODS - 1000M FIELD SIZE

No. Waypoints Distance Near-Miss Conflict
Planes Reached Ratio Reduction Reduction

4 32.0 1.36 0.0∗ 30.0%
8 59.3 1.52 67.50% 76.92%
16 107.7 1.86 38.93% 0.0∗
32 110.3 2.77 30.3% 35.5%

(∗ denotes areas where Dongt et al. performed worse than the base
case.)

This approach improved upon the base case in most categories
and field sizes, but can be optimized further. Changes mentioned
previously, such as adding the bearing angle of the opposite plane
as a fuzzy input, were made to the methods of Dong et al and the
results are detailed below. These are the results from the fuzzy rules
and fuzzy set dimensions described in graphs and tables previously.

VI. CONCLUSIONS

This paper presents a solution to high-density UAV collision
avoidance using fuzzy logic. While we still experienced near-misses
in the higher density cases, the overall reduction in near-misses as
compared to the base case was significant. In every field situation,



TABLE XIII
FINAL RESULTS - 500M FIELD SIZE

No. Waypoints Distance Near-Miss Conflict
Planes Reached Ratio Reduction Reduction

4 62.7 1.67 100.0% 100.0%
8 82.3 1.08 100.0% 100.0%
16 76.0 4.27 98.32% 97.59%
32 50.0 7.55 97.94% 97.39%

TABLE XIV
FINAL RESULTS - 1000M FIELD SIZE

No. Waypoints Distance Near-Miss Conflict
Planes Reached Ratio Reduction Reduction

4 39.7 1.08 100.0% 100.0%
8 80.3 1.17 100.0% 100.0%
16 128.7 1.51 99.33% 99.05%
32 160.3 2.07 98.12% 99.55%

we were able to decrease the number of near-misses compared to the
base case by a minimum of 97%, 100% in the lower density cases.
By using a simple determination mechanism to see if a UAV is in
a collision situation, we use a fuzzy inference system to determine
the appropriate change in heading based on the bearing angles of
each plane and the distance between both planes. Results were
generated by using a ROS based simulator which sends position
updates for each UAV once per second. Results were evaluated based
on effectiveness in avoiding collisions as well as efficiency in path
taken and waypoints reached. The future work section details the
areas of improvement that future research can take. Fuzzy logic
systems should be considered as a valid solution to UAV collision
avoidance.

VII. FUTURE WORK

One major advantage of a fuzzy logic system used in collision
avoidance is dealing with uncertainty of inputs and outputs. In
simulation, inputs are known exactly, but this is not always the case
in real-world applications. Variance in data due to weather or noise
could affect the certainty of data. Ranges of fuzzy sets will be able to
handle this uncertainty of input measurement values as well as other
system disturbances. A real-world implementation is part of intended
future work of this research.

Other future work includes a better approach for determining
the most dangerous UAV, or determining the UAV with which a
collision is most imminent. As stated above, only the closest UAV
to the current UAV was considered. Several geometric approaches
exist that would be better suited to determining the most dangerous
UAV, instead of the closest UAV. Exploring the use of a different
determination mechanism would likely increase both efficiency and
effectiveness. Limitations of our current approach include increased
risk of collisions with planes flying relatively parallel or heading
directly towards one another. One such approach that eliminates these
two limitations is presentated by Ghose et al. by using their Zero
Effort Miss metric [20].

Future work will also include further optimization of fuzzy sets and
rules. Time limited the number of test cases, and the sets and rules
presented here are manually tuned. Other optimization techniques for
fuzzy logic engines will be explored and implemented in the future.
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